曾辉

发布时间:2024-04-30浏览次数:374

  • 曾辉/(Zeng Hui                 

    计算机科学与技术学院教师 副研究员 硕士生导师

    电子邮件:zengh5@mail2.sysu.edu.cn

    办公地址: 东九2-68

    研究方向:博弈论, 图像取证, 对抗环境下机器学习

    社会兼职:中国图象图形学学会 数字媒体取证与安全专委会 委员

    主讲课程:多媒体安全,数字取证技术实验,信息安全新技术专题等


  • 个人简介/最新近况

    欢迎对媒体安全,视觉模型安全等方向有兴趣的中外老师和同学前来交流。

    学术主页:https://scholar.google.com/citations?user=__LlM6MAAAAJ

    citation: 400+, H-index: 11

    代码仓库: https://www.github.com/zengh5

    招生信息: 每年招收1-3名国内或国际硕士研究生,申请者首次联系时需至少阅读课题组研究领域内论文一篇。

    论文、著作、专利等

    论文:

    1. 视频/图像取证

    [1] Zeng, Hui and Kang, Xiangui, “Fast source camera identification using content adaptive guided image filter”, Journal of forensic sciences, 61(2): 520–526, 2016

    Code: https://github.com/zengh5/SCI_CAGF

    [2] Zeng, H. and Peng, A. and Lin, X. and Luo, S., “Source smartphone identification for digital zoomed images”, Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6, 2019.

    [3] Zeng, Hui and Wan, Y. and Deng, K. and Peng, A., “Source Camera Identification with Dual-Tree Complex Wavelet Transform” IEEE Access, 8: 18874–18883. Code: https://github.com/zengh5/SCI_DTCWT

    Paper: https://ieeexplore.ieee.org/document/8966247

    [4] Zeng, Hui and Zhan, Yifeng and Kang, Xiangui and Lin, Xiaodan, “Image splicing localization using PCA-based noise level estimation”, Multimedia Tools and Applications, 76(4): 4783–4799, 2017

    Code: https://github.com/MKLab-ITI/image-forensics/tree/master/matlab_toolbox

    Paper: https://link.springer.com/article/10.1007/s11042-016-3712-8

    [5] Zeng, Hui, Peng, Anjie, and Lin, Xiaodan, “Exposing Image splicing with inconsistent sensor noise levels”, Multimedia Tools and Applications, 2020, 79: 26139–26154

    Code: https://github.com/zengh5/Exposing-splicing-sensor-noise

    Paper: https://link.springer.com/article/10.1007/s11042-020-09280-z

    [6] MDM Hosseini, M. Goljan, and Hui Zeng, “Semi-Blind Image Resampling Factor Estimation for PRNU Computation,” in Proc. IS&T Int’l. Symp. on Electronic Imaging: Media Watermarking, Security, and Forensics, 2020, pp 77-1–77-11, https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-077

    [7] Hui Zeng, MDM Hosseini, and Miroslav Goljan, “Replacing DWT with DTCWT in blind image rotation angle estimation,” in Proc. IS&T Int’l. Symp. on Electronic Imaging: Media Watermarking, Security, and Forensics, 2021, pp 275-1–275-7, https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-275

    [8] Kun Yu, Rongsong Yang, Hui Zeng, and Anjie Peng, 'Joint estimation of image rotation angle and scaling factor', 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1716–1721.

    [9] Kun Yu, MDM. Hosseini, Anjie Peng, Hui Zeng, M. Goljan, 'Make your enemy your friend: improving image rotation angle estimation with harmonics,' ICASSP2023.

    Code: https://github.com/zengh5/Rotation_angle_estimation_harmonic

    Paper: https://ieeexplore.ieee.org/document/10095317/

    [10] Hui Zeng, Kang Deng, Anjie Peng, ISO Setting Estimation Based on Convolutional Neural Network and Its Application in Image Forensics, IWDW2020.

    Code: https://github.com/zengh5/ISONet

    [11] Tong Zhang, Anjie Peng, Hui Zeng, “Ignored Details in Eyes: Exposing GAN-generated Faces by Sclera,” 2023ICONIP, pp 563–574.

    Paper: https://link.springer.com/chapter/10.1007/978-981-99-8073-4_43

    Code: https://github.com/10961020/Deepfake-detector-based-on-blood-vessels



    2 反取证及其对策

    [12] Zeng, Hui and Chen, J. and Kang, X. and Zeng, W., “Removing camera fingerprint to disguise photograph source”, 2015 IEEE International Conference on Image Processing (ICIP), 1687–1691

    [13] Wu, J. and Wang, Z. and Zeng, Hui and Kang, X., “Multiple-Operation Image Anti-Forensics with WGAN-GP Framework”, 2019 APSIPA ASC, pp. 1303–1307.

    [14] Zeng, Hui, Peng, Anjie, and Kang, Xiangui, 'Hiding traces of camera anonymization by Poisson blending“ Accepted by ICAIS2020.

    [15] Zeng, Hui and Kang, Xiangui and Huang, Jiwu, “Mixed-strategy Nash equilibrium in the camera source identification game”, 2013ICIP, 4472–4476

    [16] Zeng, Hui and Jiang, Yunwen and Kang, Xiangui and Liu, Li, “Game theoretic analysis of camera source identification”, 2013 APSIPA ASC, 1–9.

    [17] Zeng, Hui and Kang, Xiangui, “Camera source identification game with incomplete information”, International Workshop on Digital Watermarking (IWDW), 192–204, 2013, (Best student paper)

    [18] Zeng, Hui and Liu, J. and Yu, J. and Kang, X. and Shi, Y. and Wang, Z Jane “A framework of camera source identification Bayesian game”, IEEE transactions on cybernetics, 47(7): 1757–1768, 2016

    Paper: https://ieeexplore.ieee.org/document/7469854/

    [19] X. Kang, T. Qin and H. Zeng, 'Countering median filtering anti-forensics and performance evaluation of forensics against intentional attacks,' 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). Paper: https://ieeexplore.ieee.org/document/7230449

    [20] Zeng, Hui and Qin, Tengfei and Kang, Xiangui and Liu, Li, “Countering anti-forensics of median filtering”, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2704–2708

    Paper: https://ieeexplore.ieee.org/document/6854091

    [21] Jiang, Y. and Zeng, Hui and Kang, X. and Liu, L., “The game of countering JPEG anti-forensics based on the noise level estimation”, 2013 APSIPA ASC, 1–9.

    [22] Zeng, Hui and Yu, J. and Kang, X. and Lyu, S., “Countering JPEG anti-forensics based on noise level estimation”, Science China Information Sciences, 61(3): 032103, 2018

    [23] Zeng, Hui and Kang, Xiangui and Peng, Anjie, “A multi-purpose countermeasure against image anti-forensics using autoregressive model”, Neurocomputing, 189: 117–122, 2016

    3 对抗样本生成/检测

    [24] A. Peng, K. Deng, J. Zhang, S. Luo, H. Zeng, W. Yu, “Gradient-based adversarial image forensics,” the 27th International Conference on Neural Information Processing, pp. 417–428, 2020

    [25] Kang Deng, Anjie Peng, Hui Zeng, 'Detecting C&W adversarial images based on noise addition-then-denoising,' ICIP2021, pp.3607–3611

    [26] Hui Zeng, Kang Deng, Biwei Chen, Anjie Peng, 'How secure are the adversarial examples themselves?' ICASSP2022, pp. 2879–2883

    Code: https://github.com/zengh5/adversarial-example-security

    Paper: https://ieeexplore.ieee.org/document/9747206

    [27] Zhi Lin, Anjie Peng, Hui Zeng, et al. 'Boosting transferability of adversarial example via an enhanced EULER's method,' ICASSP2023.

    Paper: https://ieeexplore.ieee.org/document/10096558

    [28] Zhi Lin, Anjie Peng, Hui Zeng, et al. 'An enhanced neuron attribution-based attack via pixel dropping,' ICIP2023, pp. 3439–3443.

    Paper: https://ieeexplore.ieee.org/document/10222034

    [29] Hui Zeng, Tong Zhang, Biwei Chen, Anjie Peng. 'Enhancing targeted transferability via suppressing high-confidence labels,' ICIP2023, pp. 3309–3313.

    Paper: https://ieeexplore.ieee.org/document/10222841

    Code: https://github.com/zengh5/Transferable_targeted_attack

    [30] Hui Zeng, Biwei Chen, Kang Deng, Anjie Peng. 'Adversarial example detection Bayesian game,' ICIP2023, pp. 1710–1714.

    Paper: https://ieeexplore.ieee.org/document/10222129

    Code: github.com/zengh5/AED_BGame.

    [31] H. Zeng, B. Chen, R. Yang, C. Li, A. Peng, “Towards undetectable adversarial examples: a steganographic perspective,” 2023ICONIP, pp. 172–183.

    Paper: https://link.springer.com/chapter/10.1007/978-981-99-8070-3_14

    Code: github.com/zengh5/Undetectable-attack

    [32] C. Li, A. Peng, Hui Zeng, et al., “Fooling Downstream Classifiers via Attacking Contrastive Learning Pre-trained Models” 2023ICONIP.

    [33] G. Shi, A. Peng, Hui Zeng, et al., “Neuron Attribution-Based Attacks Fooling Object Detectors” 2023ICONIP.

    [34] A. Peng, K. Deng, Hui Zeng*, et al. “Detecting Adversarial Examples via Classification Difference of a Robust Surrogate Mode” 2023ICONIP.

    [35] G. Shi, Z. Lin, A. Peng, Hui Zeng, “An Enhanced Transferable Adversarial Attack Against Object Detection” 2023IJCNN.

    [36] H. Zeng, B. Chen, A. Peng, “Enhancing targeted transferability via feature space fine-tuning” ICASSP2024, pp. 4475–4479.

    Paper: https://arxiv.org/abs/2401.02727  Code: github.com/zengh5/TA_feature_FT

    [37] A. Peng; G. Shi; Z. Lin; H. Zeng; X. Yang, 'Approximating High-order Adversarial Attacks Using Runge-Kutta Methods,' 2024, Tsinghua Science and Technology.

    [38] Qiang Wan, Biwei Chen, Anjie Peng, Hui Zeng, 'A whale falls, all thrive: Mitigating attention gap to improve adversarial transferability,' 2024ICPR, pp. 346–359. Code: https://github.com/britney-code/EIT-attack

    [39] Hui Zeng, Sanshuai Cui, Biwei Chen, Anjie Peng, 'Everywhere Attack: Attacking Locally and Globally to Boost Targeted Transferability,' to appear in 2025AAAI.

    Code: https://github.com/zengh5/Everywhere_Attack

    项目

    [1] 对抗样本安全性提升方法研究,2024.05-2025.05,广东省信息安全重点实验室开放课题,2023B12120600262万元,主持;

    [2] 通过隐写嵌入概率图提升对抗样本的安全性,2022.06-2023.06,广东省信息安全重点实验室开放课题,2020B12120600782万元,主持;

    [3] 最新图像操作技术的取证和反取证研究, 2018.07-2021.06,西南科技大学科研启动金,30万元,主持;

    [4] 图像来源取证安全性研究,2018.01-2020.12, 国家自然科学基金(青年), 6170242925万元,主持;

    [5] 信息取证博弈和加密域信号,2014.01-2017, 国家自然科学基金(面上)6137915567万元,参与。

    获奖、荣誉、学术服务

    [1] 2020年阿里天池 AI security 挑战赛, 3名实验室研究生万永财、余琨、羊荣松获得赛道一(攻击)全球第2名赛道二(防御)全球第34名。

    https://tianchi.aliyun.com/competition/entrance/531812/rankingList/0

    [2] In ChinaMFS2023, 硕士生张桐荣获优秀论文奖.

    https://cs.swust.edu.cn/newsdetail/news-8755

    教育经历

    访问学者, 2019.11-2020.11, Binghamton University, SUNY, 合作导师: M. Goljan

    博士, 2012-2016, 中山大学, 通信与信息系统专业,导师:康显桂;

    硕士, 2004-2007, 南京邮电大学, 通信与信息系统专业, 导师:糜正琨;

    本科, 2000-2004, 南京邮电大学, 通信工程专业。